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Given the success of cue exposure (extinction) therapy combined with a cognitive enhancer for reducing
anxiety, it is anticipated that this approach will prove more efficacious than exposure therapy alone in
preventing relapse in individuals with substance use disorders. Several factors may undermine the efficacy of
exposure therapy for substance use disorders, but we suspect that neurocognitive impairments associated
with chronic drug use are an important contributing factor. Numerous insights on these issues are gained
from research using animal models of addiction. In this review, the relationship between brain sites whose
learning, memory and executive functions are impaired by chronic drug use and brain sites that are important
for effective drug cue extinction learning is explored first. This is followed by an overview of animal research
showing improved treatment outcome for drug addiction (e.g. alcohol, amphetamine, cocaine, heroin) when
explicit extinction training is conducted in combination with acute dosing of a cognitive-enhancing drug. The
mechanism by which cognitive enhancers are thought to exert their benefits is by facilitating consolidation of
drug cue extinction memory after activation of glutamatergic receptors. Based on the encouraging work in
animals, factors that may be important for the treatment of drug addiction are considered.
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In the anxiety disorders field, numerous studies have shown that
exposure therapy, a procedure involving repeated confrontation with
feared stimuli in a controlled setting, is highly effective as a stand-
alone treatment for reducing anxiety and preventing its return
(Hofmann et al., 2009; Otto et al., 2004). Exposure therapy for
substance use disorders is conceptually similar in that in a controlled
setting, individuals addicted to drugs are confronted repeatedly with
drug cues. This approach, however, is not consistently effective in
reducing reactivity to drug cues and for preventing drug relapse
(Conklin and Tiffany, 2002). Several factors may undermine the
efficacy of exposure therapy for substance use disorders, but we
suspect that neurocognitive impairments associated with chronic
drug use, particularly in individuals who are most severely depen-
dent, are an important contributing factor. Exposure therapy is a form
of extinction learning, and it is noteworthy that the brain sites needed
for effective extinction learning may become dysfunctional after
chronic drug use (Fowler et al., 2007; Stephens and Duka, 2008; Liu
et al., 2009; for review, see Kantak and Nic Dhonnchadha, 2011). One
focus of the current review is on animal research models that explore
the relationship between brain sites whose learning, memory and
executive functions are impaired by chronic drug use and brain sites
that are important for effective drug cue extinction learning. While
neurocognitive impairmentsmay undermine extinction learning, new
hope is afforded by preclinical research, reviewed below, showing
improved treatment outcome for drug addiction when explicit
extinction training is conducted in combination with acute (single
injection) or subacute (two or more injections) dosing with a
cognitive-enhancing drug. It is hoped that employment of this dosing
regimen will avoid potential confounds such as sensitization of the
gluatamatergic system due to repeated administration over short
intervals (Boje et al., 1993; Parnas et al., 2005; Botreau et al., 2006;
Werner-Seidler and Richardson, 2007) that may diminish the efficacy
of the particular cognitive enhancer in use. In this respect, the use of
cognitive enhancers for the treatment of substance use disorders
differs conceptually from their use in the treatment of other
neuropsychiatric disorders (e.g., Alzheimer's, Schizophrenia, and
Attention Deficit/Hyperactivity Disorder) where a chronic rather
than an acute dosing regimen would be employed.

1. Neurocognitive deficits associated with abused substances

The close correspondence in the neurocognitive deficits produced
by abused substances in humans and animals suggests that mean-
ingful insights can be obtained from animal models of drug-related
learning and modification by pharmacological agents. One advantage
of conducting animal studies is that they allow systematic assessment
of the effects of drugs of abuse on neurocognitive function throughout
the lifespan. Studies in animals include work on attention, working
memory and impulsivity (prefrontal cortex-related functions) as
well as work on associative learning and memory (amygdala- and
hippocampus-related functions) following exposure to several drugs
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of abuse (e.g., cocaine, amphetamine, opiates, ethanol and nicotine).
Below, distinctions are made as to whether drugs were administered
acutely or chronically, whether drugs were administered contingently
(self-administered) or non-contingently (experimenter-delivered
injections or passively yoked delivery), and whether animals were
tested in the drug-free state or while under the influence of drug. The
mode of drug delivery may be an important factor for observing
neurocognitive changes because numerous animal studies report a
variety of physiological and neurochemical distinctions between
contingent and noncontingent drug exposure (Kantak et al., 2005;
Udo et al., 2004).

1.1. Attention

Chronic cocaine injection during the prenatal period in rats has
been shown to disrupt both selective and sustained attention during
adulthood (Garavan et al., 2000; Gendle et al., 2003). Likewise,
adolescent rats given repeated injections of cocaine were shown to
display abnormally rapid shifts in selective attention during adult-
hood (Black et al., 2006). When cocaine and other drugs of abuse such
as amphetamine and heroin are contingently self-administered by
adult rats and then withdrawn, deficits in sustained attention have
been found as well (Dalley et al., 2005; 2007). Chronic amphetamine
injection additionally produces deficits in selective and sustained
attention in adult rats (Crider et al., 1982; Fletcher et al., 2007).
Interestingly, acute cocaine or amphetamine injection in adult rats
was found to improve selective and sustained attention (Bizarro et al.,
2004; Grilly et al., 1989; Koffarnus and Katz, 2010) and to reduce
variance in the amplitudes of auditory evoked potentials (Robledo
et al., 1993). These effects are consistent with themasking of attention
deficits after recent cocaine use in dependent individuals (Pace-Schott
et al., 2008; Woicik et al., 2009). In a study examining the effects of
acute nicotine, acute ethanol and their combination on sustained
attention in adult rats, it was demonstrated that nicotine alone
improved attention and that ethanol alone slightly disrupted
attention, but that both drugs combined produced large decrements
in attention (Bizarro et al., 2003). In other studies of sustained
attention, it was shown that acute ethanol injection at a dose that did
not impair attention was able to block the improvement in attention
induced by an acute injection of nicotine (Rezvani and Levin, 2003).
As nicotine and ethanol often are taken together by humans (Hughes,
1995), their combined use may result in suboptimal attention.
Interestingly, daily exposure to ethanol vapor for 14 days was
shown to improve the accuracy of sustained attention in adolescent
and adult rats, which may have been due to central nervous system
arousal induced by the ethanol vapor (Slawecki, 2006). Collectively,
these studies suggest that while acute exposure to certain drugs may
improve attention, chronic exposure to drugs such as cocaine,
amphetamine and opiates disrupts attention. These disruptions in
attention appear to be related to the direct pharmacological effects of
these drugs of abuse as there are similar effects of contingent and non-
contingent drug exposure.

1.2. Working memory

In rat models, chronic nicotine infusion was shown to improve
working memory (Levin et al., 1996). However, during the two weeks
after withdrawal, nicotine-induced improvements in working mem-
ory were no longer evident. Regarding other drugs of abuse, working
memory deficits are reported in rats trained to self-administer cocaine
(Kantak et al., 2005) and trained to self-administer cocaine and then
withdrawn (Harvey et al., 2009; George et al., 2008). Interestingly,
passively yoked cocaine delivery did not impact working memory
(Harvey et al., 2009; Kantak et al., 2005), suggesting that the
contingency of cocaine delivery is important for altering the working
memory function of the prefrontal cortex. Although acute injection of
amphetamine improves working memory (Meneses et al., 2011),
chronic injection of amphetamine neither improves nor disrupts
working memory (Shoblock et al., 2003), suggesting that contingency
of amphetamine delivery may be a factor as well with repeated
exposure. Regarding opiates, rats made dependent on morphine
displayed deficits in working memory if i.p. injections were given
(Braida et al., 1994), but not if oral solutions were provided (Miladi
et al., 2008). These findings suggest that non-contingent morphine
exposure produces inconsistent effects on working memory. How
working memory in rats may be impacted by contingent morphine
exposure is not yet known. In contrast, before and after withdrawal
from chronic ethanol injection or its oral consumption, working
memory deficits are apparent (Santin et al., 2000; Santucci et al.,
2004; White et al., 2000). Thus, ethanol may be disruptive to working
memory due to its direct pharmacological action. Interestingly,
nicotine plus ethanol co-injection in rats produces pronounced
deficits in working memory at doses of each that do not alter working
memory when injected alone (Rezvani and Levin, 2003).

1.3. Impulsivity

While impulsivity is a risk factor that predicts vulnerability for
drug abuse, it also is a consequence of chronic drug use (Carroll et al.,
2009; Winstanley et al., 2010). Impulsivity is associated with a
number of drugs of abuse. In animal studies, chronic cocaine injection
(Paine et al., 2003) and acute morphine injection (Kieres et al., 2004;
Pattij et al., 2009; Pitts and McKinney, 2005) have been shown to
increase impulsivity in a delayed discounting task. Notably, chronic
cocaine self-administration in rats prescreened for low impulsivity
can cause these rats to become more impulsive on a delayed
discounting task for food after cocaine is withdrawn (Anker et al.,
2009). Rats with low impulsivity also are more impulsive after acute
amphetamine injection (Perry et al., 2008) and withdrawal from
chronic amphetamine self-administration additionally increases
impulsivity in rats (Dalley et al., 2007). In rats chronically injected
with nicotine during adolescence or adulthood and then withdrawn
for 5 weeks, impulsive choice for immediate small food rewards over
delayed large food rewards was not observed (Counotte et al., 2009).
However, in another study of chronic nicotine injection, adult rats
responded more impulsively in a delayed discounting task for up to
30 days after nicotine was withdrawn (Dallery and Locey, 2005).
These findings suggest that the nicotine deprivation effect on
impulsive choice is associated mainly with the early stages of nicotine
withdrawal.

Rats and mice selectively bred for high ethanol-preference were
shown to be more impulsive than their counterparts selectively bred
for low ethanol-preference, consistent with the idea that impulsivity
is a trait characteristic of alcoholism (Oberlin and Grahame, 2009;
Wilhelm and Mitchell, 2008). However, acute ethanol injection in an
outbred rat strain was shown to produce increased impulsivity. Rats
chose immediate rewards over delayed rewards, suggesting induction
of impulsivity by ethanol exposure (Olmstead et al., 2006). Overall,
impulsivity appears to be associated with exposure to several drugs of
abuse and is particularly apparent when drug is withdrawn following
chronic contingent or non-contingent administration.

1.4. Amygdala-related learning and memory

Stimulus-reward learning occurs via a Pavlovian associative
mechanism that is regulated by the amygdala (McDonald and White,
1993; Kantak et al., 2001). In adult rats trained to self-administer
cocaine or receiving yoked-cocaine passively, stimulus-reward learn-
ing was disrupted as assessed by preference for a cue paired with a
highly palatable food reward (Udo et al., 2004; Kerstetter and Kantak,
2007). Chronic amphetamine injection also has been shown to impair
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amygdala-dependent appetitive cue learning (Ito and Canseliet,
2010).

Pavlovian cued fear conditioning also measures amygdala-related
learning, but in this case, learning is induced by negative rather than
positive affect (Maren et al., 1996; Campeau and Davis, 1995). Acute
or chronic injection of morphine (Good and Westbrook, 1995; Gu
et al., 2008) and cocaine (Wood et al., 2007; Burke et al., 2006) have
been shown to impair acquisition and extinction of cue-conditioned
fear in rats. Acute ethanol injection (Lattal, 2007; Land and Spear,
2004) and withdrawal from its chronic oral consumption (Bergstrom
et al., 2006) also impair acquisition and extinction of cue-conditioned
fear in rats. Chronic nicotine injection on the other hand, can impair
extinction but not acquisition of cue-conditioned fear (Tian et al.,
2008) whereas chronic amphetamine injection can enhance acquisi-
tion but not extinction of cue-conditioned fear (Carmack et al., 2010).
Collectively, these studies demonstrate mainly impairment in amyg-
dala-related learning following contingent and non-contingent
exposure to various drugs of abuse in animal subjects.
1.5. Hippocampus-related learning and memory

The hippocampus is involved in the processing of spatial,
contextual and episodic associations (Smith and Mizumori, 2006). It
is important for the acquisition of new learning and for the
strengthening of learned associations for later retrieval (Zola-Morgan
and Squire, 1990; Morris et al., 2006). Using either a water maze task
of spatial learning (Del Olmo et al., 2007) or a radial-armmaze task of
spatial learning (Kantak et al., 2005), adult rats self-administering
cocaine or receiving it passively in a yoked fashion were shown to
reach their goal (finding a hidden platform or retrieving all eight
rewards) more quickly than saline controls when tested 0.5 to 3 h
after cocaine sessions ended. It is possible that these findings are
explained by the psychomotor stimulant effects of cocaine and do not
reflect an actual improvement in spatial learning. Alternatively,
cocaine-induced deficits in the functioning of the prefrontal cortex
and amygdala could cause other memory systems, such as the
hippocampus, to gain greater control over behavior (White and
McDonald, 2002; Poldrack and Packard, 2003). Whether or not this
abnormally rapid processing of spatial information in cocaine-
exposed rats is maladaptive remains to be determined. It should be
noted, however, that one study using experimenter-delivered, high-
dose injection of cocaine (40 mg/kg/day, s.c.) found increased escape
latencies (worse performance) in the water maze task (Quirk et al.,
2001). This is consistent with studies in rats exposed to experimenter-
delivered, high-dose injection of cocaine (50 mg/kg/day, s.c.) during
the preweaning period and then tested on a radial-arm maze task
during adulthood in the drug-free state (Melnick et al., 2001). These
findings argue against simple psychomotor activation as an explana-
tion for improved performance in spatial learning tasks following i.v.
cocaine exposure. Dose may be a critical factor for observing cocaine-
induced improvements or deficits in spatial learning in rats because in
the i.v. cocaine studies mentioned above (Del Olmo et al., 2007;
Kantak et al., 2005), the cumulative dose of cocaine was approxi-
mately 10 to 15 mg/kg/day, with its i.v. delivery spaced over a 2-hr
period. The rats receiving a single 40 mg/kg/day s.c. injection of
cocaine (Quirk et al., 2001) would have had higher sustained blood
levels of cocaine at the time of testing relative to the rats in the self-
and passive-administration studies.

Concerning other drugs of abuse, chronic heroin injection in
prenatal and adult mice (Tramullas et al., 2008;Wang and Han, 2009),
chronic high dose nicotine infusion via minipump in adult rats (Scerri
et al., 2006), and acute ethanol injection in adolescent and adult rats
(Silvers et al., 2003) also were shown to produce deficits in spatial
learning. Similar to cocaine, one recent study has shown that while
chronic amphetamine injection impaired amygdala-dependent appe-
titive cue learning, it enhanced hippocampus-dependent spatial
learning (Ito and Canseliet, 2010).

Like spatial learning, contextual learning is impaired by drugs of
abuse in animal models of contextual fear conditioning, which
requires the hippocampus (Rudy et al., 2004). Acute and chronic
injection of cocaine (Wood et al., 2007; Morrow et al., 1995) has been
shown to attenuate acquisition of contextual fear conditioning.
Chronic morphine injection also attenuates acquisition of contextual
fear conditioning when tested early but not later in withdrawal (Gu
et al., 2008; McNally and Westbrook, 2003). Whereas acute nicotine
injection in low doses has been shown to enhance acquisition of
contextual fear conditioning (Wehner et al., 2004), its is disrupted
following chronic nicotine withdrawal (Gulick and Gould, 2008).
Acute ethanol injection has unique effects on contextual fear
conditioning; high doses impair and low doses enhance its acquisition
(Gulick and Gould, 2007; Wehner et al., 2004). Given that high doses
of ethanol have anxiolytic actions (Aston-Jones et al., 1984), it is
possible that the reduction in freezing behavior in a fear-related
context by high dose ethanol is mediated by an anxiolytic effect rather
than by a disruption in contextual learning. Nicotine, which also has
anxiolytic effects (Cohen et al., 2009), interacts with ethanol in such a
way to suggest that high dose ethanol reduces freezing behavior by
disrupting contextual learning. Specifically, high dose ethanol-
induced deficits in contextual fear conditioning are reversed by
acute low dose nicotine injection (Gulick and Gould, 2008). Moreover,
acute low dose ethanol injection can cause a reversal of high dose
nicotine withdrawal-induced deficits in contextual fear conditioning
(Gulick and Gould, 2008). Collectively, these studies demonstrate that
various aspects of hippocampus-related learning are altered following
contingent and non-contingent exposure to drugs of abuse or their
withdrawal in animal subjects. Dose may be a critical factor for
observing deficits or improvements in hippocampus-related learning.

Given the above changes in attention, working memory, impul-
sivity and associative learning, it appears that functioning of the
prefrontal cortex, amygdala and hippocampus is altered by chronic
exposure to drugs of abuse. Whether these changes described above
are associated with development of the addicted state or are related
simply to long-term contingent or non-continent drug exposure
remains a question for future investigations. The value of these animal
studies is that they help us understand how functioning of key
structures important for extinction learning (see below), may be
impacted by chronic exposure to drugs of abuse

2. Neurobiological substrates of drug cue extinction learning

In order to develop effective pharmacotherapies for use in
combination with exposure therapy in the treatment of drug
addiction, it is crucial to understand the neurobiological under-
pinnings of drug cue extinction learning. While research on this topic
in the addiction field is still in its infancy, evidence indicates that drug
cue extinction may involve circuits and use mechanisms of synaptic
plasticity similar to those of conditioned fear learning (Myers and
Carlezon, 2010b for review). Two animal paradigms are routinely
employed to assess addiction-related extinction learning at the
preclinical level: the conditioned place preference and drug self-
administration procedures.

Conditioned place preference is used to assess the ability of non-
contingent or passive administration of drugs of abuse to establish
learnt contextual associations and provides a measure of conditioned
drug reward (Tzschentke, 2007). Using this procedure, a drug is
repeatedly paired with a unique contextual environment, and over
time the animal exhibits a preference for the drug-paired environ-
ment over an environment that has been paired with a neutral
pharmacological stimulus (i.e., saline; Carlezon, 2003). Subsequently,
place conditioning can be reduced or eliminated by conducting
repeated preference tests in the drug-free state (extinction training;
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Fig. 1. Decrease in active lever responses from day 1 to day 2 of extinction training
during acquisition of cocaine cue extinction learning. Rats were trained to self-
administer 1.0 mg/kg cocaine under an FI 5 min (FR5:S) second-order schedule before
undergoing two 1 h extinction training sessions on consecutive days for which cocaine
delivery was suspended, but the cocaine-paired discrete light cue was presented upon
completion of each FR5. Rats received infusion of vehicle or lidocaine into the rBLA of
both hemispheres (bilateral rBLA/rBLA); infusion of vehicle or lidocaine into the DH of
both hemispheres (bilateral DH/DH); infusion of vehicle or lidocaine into the DH of one
hemisphere and the rBLA of the contralateral hemisphere (asymmetric DH/rBLA);
infusion of vehicle or lidocaine into the DH of one hemisphere with infusion of only
vehicle into the contralateral rBLA (unilateral DH/rBLA); infusion of vehicle or lidocaine
into the rBLA of one hemisphere with infusion of only vehicle into the contralateral DH
(unilateral rBLA/DH); infusion of vehicle or lidocaine into the DH and rBLA of the same
hemisphere (ipsilateral DH/rBLA). n=4–8 rats per treatment group. * pb0.05 com-
pared to the corresponding vehicle/vehicle (V/V) control treatment. The figure is
adapted from Table 1, reported in Szalay et al., 2011.
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Bardo et al., 1986; Calcagnetti and Schechter, 1993; Mueller and
Stewart, 2000; Schroeder and Packard, 2004). Thus, this procedure
measures extinction to background environmental cues associated
with drug exposure.

The self-administration model uses operant responding for drug
delivery and measures the reinforcing effects of a drug. In this
paradigm, subjects typically are trained to perform an operant task
(nose poke or lever press) in order to receive an intravenous infusion
of drug, serving as the unconditioned stimulus (US). Drug delivery
often is paired with the presentation of a conditioned stimulus (CS), a
discrete tone and/or light, which allows for the formation of Pavlovian
CS–US associations. One form of extinction training involves removal
of drug and discrete CSs in the self-administration environment
(sometimes referred to as response extinction training). This pro-
cedure measures extinction to environmental cues associated with
drug exposure and is the most widely used method of extinction
training in animal self-administration studies. Response extinction
training typically precedes reinstatement tests in which animals are
reintroduced to the discrete cues. When the discrete cues are
reintroduced, the conditioned response, i.e., operant responding, is
reinstated and this behavioral output is designated as drug-seeking
behavior (Spealman et al., 1999). Drug-seeking behavior is analogous
to cue reactivity in humans and is conceptualized as the sensitivity to
drug-associated cues. These reinstatement sessions may be viewed as
drug cue extinction sessions, whereby animals learn that the CS
associated with the response no longer predicts delivery of primary
reinforcement, resulting in a decline in drug-seeking behavior.
However, it is important to consider that the use of reinstatement
tests to model drug cue extinction involve the animal first undergoing
response extinction training, which in itself produces marked neu-
robiological changes in the brain (Schmidt et al., 2001; Sutton et al.,
2003; Self et al., 2004). In some instances, reinstatement tests follow a
period of abstinence (removal of both the drug and the drug-paired
environment) that also produces neurobiological changes (Lu et al.,
2004b; Schmidt and Pierce, 2010). Both processes are not necessarily
direct contributors to the learning mechanisms at work during
drug cue extinction. An animal model that explicitly extinguishes
responses only in the presence of discrete drug-paired cues would
more closely approximate exposure therapy in drug addicts (e.g., Nic
Dhonnchadha et al., 2010b). Nonetheless, a review of research using
these three different methods of extinction training in self-admin-
istration studies (response extinction training, reinstatement test-
ing, drug cue extinction training), as well as extinction training
associated with the conditioned place preference procedure, reveals
an overlap between brain sites whose learning, memory, and exec-
utive functions are impaired by chronic drug use (see Section 1
above) and brain sites that are important for effective addiction-
related extinction learning.

2.1. Basolateral amygdala

Several lines of research have extensively implicated the basolateral
amygdala (BLA) in the initial formation of cocaine-cue associations, as
well as expression of cocaine-seeking behavior (e.g., Brown and Fibiger,
1993; Whitelaw et al., 1996; Ciccocioppo et al., 2001; Kruzich and See,
2001; Mashhoon et al., 2009). The use of c-Fos as a marker of neuronal
activation indicates involvement of this area following cue-elicited
drug-seeking behavior. Increased c-Fos expression was observed in the
BLA following cue-elicited cocaine-seeking behavior to both an
extinguished and non-extinguished cocaine-paired cue (Neisewander
et al., 2000; Ciccocioppo et al., 2001; Kufahl et al., 2009). Additionally
a correlation between lever pressing and c-Fos expression in the
BLA was evident (Kufahl et al., 2009). Using the conditioned place
preference paradigm, Miller and Marshall (2005) showed that
cocaine associated environmental stimuli activate BLA neurons, as
shown by increases in c-Fos expression. In addition, increased levels of
c-Fos were observed in BLA during reinstatement of alcohol-seeking
behavior (Millan et al., 2010).

Disruption to BLA activity via lesions or inactivation blocks the
ability of cocaine associated stimuli to reinstate extinguished
responding (Meil and See, 1997; Grimm and See, 2000; Kantak et al.,
2002; Yun and Fields, 2003; McLaughlin and See, 2003; Peters et al.,
2008b; Mashhoon et al., 2010). Conversely, electrical stimulation
of the BLA reinstates conditioned response in rats subsequent to
response extinction training (Hayes et al., 2003). Disruption of BLA
functioning following cue-induced reinstatement sessions results in
impaired consolidation of this cue extinctionmemory, as evidenced by
poor retrieval during a subsequent cue extinction retention session
(Fuchs et al., 2006b).

Using an animal model that more closely approximates cue
exposure therapy in drug addicts, we recently demonstrated the
importance of the BLA for cocaine cue extinction learning (Szalay
et al., 2011). In this study, rats were trained to self-administer cocaine
and then underwent two 1 h extinction sessions (no cocaine, but cues
present). Rats received infusions of lidocaine (a neuronal inactivating
agent) or vehicle bilaterally into the rostral BLA (rBLA) prior to
extinction sessions to determine if this site was important for
acquisition of cocaine cue extinction learning. Additional controls
examined the effect of lidocaine or vehicle infused unilaterally into
the rBLA. Results (Fig. 1) show that bilateral inactivation of rBLA with
lidocaine slowed acquisition of cocaine cue extinction learning. The
decreases in active lever responses from day 1 to day 2 of extinction
training were significantly smaller after lidocaine than after vehicle.
Lidocaine was ineffective in altering acquisition of cocaine cue
extinction learning when unilateral rBLA manipulation was imple-
mented. Collectively, data from a variety of studies suggest that the
BLA may be important for the learning and consolidation of drug cue
extinction.

http://dx.doi.org/doi:10.1111/j.14602010.07581.x
http://dx.doi.org/doi:10.1111/j.14602010.07581.x
http://dx.doi.org/doi:10.1111/j.14602010.07581.x
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2.2. Hippocampus

Several studies have shown that the dorsal hippocampus (DH) has
an important role in encoding contextual information to label and
retrieve memories (Rudy et al., 2002; Sanders et al., 2003) in addition
to its involvement in the extinction of fear-associated memories
(Wilson et al., 1995; Hartley and Phelps, 2010). Inactivation or
blockade of glutamatergic neurotransmission of the DH can inhibit
reinstatement of cocaine-seeking behavior (Fuchs et al., 2005; Fuchs
et al., 2007; Xie et al., 2010).

In the same study reported above to examine the role of the BLA in
cocaine cue extinction learning, the DH also was investigated (Szalay
et al., 2011). In addition to evaluating bilateral inactivation of the DH,
inactivation of the DH in one hemisphere and the rBLA in the
contralateral hemisphere (asymmetric inactivation) was evaluated to
determine if the serial connection between these sites on both sides of
the brain was important for acquisition of cocaine cue extinction
learning. Unilateral DH and ipsilateral DH/rBLA controls were used.
Results (Fig. 1) show that bilateral inactivation of DH and asymmetric
inactivation of DH/rBLA with lidocaine slowed acquisition of cocaine
cue extinction learning. The decreases in active lever responses from
day 1 to day 2 of extinction training were significantly smaller after
lidocaine than after vehicle. Lidocaine was ineffective in altering
acquisition of cocaine cue extinction learning after unilateral DH or
ipsilateral DH/rBLAmanipulations. Collectively, these findings suggest
that the BLA and DH need to be functionally active simultaneously in
both brain hemispheres to extinguish drug-seeking behavior.

2.3. Ventral and dorsal striatum

The ventral striatum consists of the nucleus accumbens core (NAc
core) and shell (NAc shell) and is involved in the control of goal-
directed behaviors (Kelley et al., 1997; Parkinson et al., 2000; Di Ciano
and Everitt, 2001) and instrumental learning (Smith-Roe and Kelley,
2000). In contrast, the dorsal striatum is involved in habit learning
(Wickens et al., 2007). The core region has been implicated primarily
in motivated behavior that has become conditioned to particular
cues, consistent with its anatomical relationships with the amygdala
(Ito et al., 2004). Importantly, a distinct pattern of firing is observed in
NAc cells during presentation of conditioned stimuli (Carelli et al.,
2000; Ghitza et al., 2003; Nicola et al., 2004; Yun et al., 2004), an effect
that persists after an extended period of cocaine abstinence
(Hollander and Carelli, 2007). With respect to extinction, inactivation
of the NAc core suppressed cocaine-seeking on the first day of
response extinction training, and appeared to inhibit the formation of
extinction memory (Sutton et al., 2003). NAc shell inactivation by
contrast did not alter responding during the first extinction training
session. Similar results are reported during cue-reinstatement tests
whereby inactivation of the NAc core, but not NAc shell, attenuated
reinstatement of cocaine-seeking behavior (Fuchs et al., 2004).
However, inactivation of either the NAc core or shell failed to alter
cue-induced drug-seeking behavior following a period of abstinence
(See et al., 2007). These results suggest that different NAc circuitry is
engaged during tests for cocaine-seeking behavior following response
extinction training vs. abstinence from cocaine self-administration. In
contrast to the NAc, inactivation of the dorsal striatum disrupts
cocaine-seeking behavior following either response extinction train-
ing or abstinence from cocaine self-administration (Fuchs et al.,
2006a; See et al., 2007). Collectively, these findings suggest that in the
absence of drug reinforcement, the ventral striatum may be engaged
to maintain goal-directed responses only in the presence of salient
cues and the dorsal striatum may be engaged to maintain habitual
responses even in the absence of salient cues to impact the rate of
extinction. However, the role of the ventral and dorsal striatum
remains unexplored in an animal model that more closely approx-
imates cue exposure therapy in drug addicts.
2.4. Medial prefrontal cortex

A role for the medial prefrontal cortex (mPFC) in extinction has
been demonstrated during cocaine cue reinstatement tests that follow
abstinence, i.e.,when the animal is no longer exposed to cocaine or the
cocaine-associated environment for a certain period of time. Using c-
Fos activation methods to reveal neurosubstrates of extinction, an
increase in the expression of c-Fos protein in the ventral mPFC
(infralimbic and ventral prelimbic cortices) was observed during
reinstatement testing in rats initially trained to self-administer
cocaine before undergoing abstinence (Zavala et al., 2007). In mice
trained in the conditioned place preference paradigm, cocaine
associated environmental stimuli activated c-Fos in interneurons of
the prelimbic cortex (Miller and Marshall, 2005). Similar changes in
the expression of c-Fos in the mPFC are reported after re-exposure to
environments previously paired with morphine, nicotine and ethanol
(Schroeder et al., 2000; Schroeder et al., 2001; Wedzony et al., 2003).

Following a period of abstinence from cocaine self-administration,
inactivation of the ventral mPFC was shown to decrease responses
during a cue extinction session, while local stimulation increased
responses (Koya et al., 2009). These findings are in contrast to those
reported during cue-reinstatement tests conducted following re-
sponse extinction training. Inactivation of dorsal mPFC (anterior
cingulate and dorsal prelimbic cortices), but not ventral mPFC, was
shown to attenuate cue-induced reinstatement of cocaine-seeking
behavior (McLaughlin and See, 2003; Di Pietro et al., 2006; Di Ciano
et al., 2007). Furthermore, Peters et al. (2008b) reported that in-
activation of the ventral mPFC potentiated spontaneous recovery of
cocaine-seeking four weeks after termination of response extinction
training. Spontaneous recovery refers to the restoration of the
extinguished response that occurs in a test session performed
following a delay (Rescorla, 2004). As previously mentioned, it has
been suggested that the neurocircuitry of cue-elicited responding
after response extinction training is different from that after
abstinence (Fuchs et al., 2006a; Peters et al., 2008a; See et al.,
2007), which may explain the discrepancy in the observed results.
These findings underscore the necessity of examining the role of the
ventral mPFC in an animal model that more closely approximates cue
exposure therapy in drug addicts.

3. Animal studies with cognitive enhancers

The fact that the potential effects of exposure therapy may be
hampered by drug-induced deficits in cognitive functioning in drug
addicts has led to the study of alternative approaches to compensate for
these shortcomings (e.g.,Vocci, 2008). It is hoped that exposure therapy
combinedwith a cognitive enhancerwill prove efficacious in preventing
relapse in individuals with substance use disorders. This strategy differs
significantly fromother approaches that attempt to generally overcome
the cognitive deficits associated with drug addiction by administering
cognitive enhancers to improve treatment retention and outcome (for
review see Sofuoglu, 2010). There are several promising candidate
cognitive enhancers for use in combination with exposure therapy, as
assessed in the four preclinical models employed to study drug cue
extinction (see Section 2 above).

Recent studies have shown that consolidation of drug cue extinction
learning in rats andmonkeys canbe facilitatedwith systemically applied
drugs targeting numerous systems. To assess the effects of putative
treatment strategies, subsequent tests of cue- or drug-elicited drug-
seeking behavior (to mimic reactivity to cues or drug in humans) or
reacquisition (when the drug is onboard again in the presence of cues)
are evaluated in animals. A common pathway of extinction-facilitating
compoundsmay be the glutamatergic system,modulation of which can
regulate synaptic plasticity and hence learning and memory processes
(Martin et al., 2000). Activation of N-methyl-D-aspartate (NMDA)
receptors leads to long-term potentiation and long-term depression,

http://dx.doi.org/doi:10.1111/j.14602010.07581.x
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which are mechanisms of synaptic plasticity associated with learning
and memory formation (Kemp and Manahan-Vaughan, 2007), as well
as its extinction (Quirk, 2006; Dalton et al., 2008). Thus, modulation
of glutamate activity during extinction training may facilitate the
process by which drug-paired cues lose salience and their control
over behavior.

3.1. Glycine site agonists

To date, the glycine-binding site of the NMDA receptor has been
proposed as a putative target for enhancing extinction learning. Since
glutamate and direct-acting NMDA receptor agonists may be
neurotoxic and are known to cause excitotoxicity (Olney, 1994;
Svensson, 2000), the strategy used in the last decade has relied on
drugs that enhance NMDA neurotransmission indirectly through
modulatory sites on the NMDA receptor complex (Millan, 2005; Stahl,
2007). The strychnine-insensitive glycine site on the NMDA receptor
complex is one such modulatory site where glycine in the presence of
glutamate facilitates ion channel opening and excitatory neurotrans-
mission without directly increasing extracellular levels of glutamate.
Much success has been reported with D-cycloserine (DCS), a partial
agonist at the glycine site of the NMDA receptor (Hood et al., 1989). In
the animal literature, DCS has been shown to improve learning and
memory in rats (Land and Riccio, 1999; Pussinen and Sirvio, 1999;
Lelong et al., 2001) and monkeys (Matsuoka and Aigner, 1996;
Schneider et al., 2000), as well as facilitating fear extinction learning
(Davis et al., 2006; Vervliet, 2008).

Several studies have investigated the ability of DCS treatment to
enhance extinction of drug-induced conditioned place preference.
Systemic administration of DCS at doses of 15 and 30 mg/kg either
before or immediately following 1 to 3 extinction training sessions has
been shown to enhance extinction of a cocaine-associated contextual
memory when testing occurs in the same context in rats (Botreau
et al., 2006; Paolone et al., 2009) and mice (Kelley et al., 2007; Thanos
et al., 2009). The facilitative effect of DCS administered systemically in
rats could be replicated by local injections made directly into the BLA,
indicating the involvement of this brain region for the acquisition and
consolidation of new associations that are formed during cocaine cue
extinction training (Botreau et al., 2006). Moreover, the effects of DCS
were specific for extinction memory, as the magnitude of cocaine
conditioned place preference (original learning) was not affected when
DCS was injected during the conditioning phase rather than the
extinction phase (Botreau et al., 2006). Additionally, a time-dependent
facilitative effectwas observedwithDCS. Specifically, a 4 h lapsebetween
termination of extinction training andDCS administration led to reduced
effectiveness of the cognitive enhancer, coinciding with the theoretical
time-window of NMDA-dependent memory consolidation. Notably,
long-lasting effects of intra-amygdalar infusion of DCS (10 μg/μl/site) in
rats and low dose systemic DCS (15 mg/kg) in mice on extinction of
cocaine-conditionedplacepreferencewere evident 2 weeks after the end
of extinction training sessions (Botreau et al., 2006; Thanos et al., 2009).
This was not the case, however when mice were tested 1–2 weeks after
termination of extinction training in combination with high dose of DCS
(30 mg/kg), and actually resulted in the renewal of the conditioned place
preference (Thanos et al., 2009). While these results may indicate
divergent dose-dependent effects of DCS, they also highlight the
importance of controlling the number of extinction and DCS treatment
sessions, as itmaybepossible thatDCS fails to provide additional benefits
to extinction when the training protocols are intensive and effective in
control animals (i.e., longer sessions and repeated extinction training).
The combination of three DCS administration and extinction training
sessions prevented cocaine-primed reinstatement of the cocaine
conditioned place preference in rats (Paolone et al., 2009), however, a
reinstatement effect was observed in mice, with a restoration of the
cocaine conditioned place preference regardless of prior DCS treatment
and enhanced facilitation of extinction learning (Kelley et al., 2007).
A handful of studies have examined the effects of DCS with other
drugs of abuse. Intra-hippocampal administration of DCS (10 μg/μl/site)
prior to extinction training sessions facilitated the rate of extinction of
amphetamine-produced place preference in rats (Sakurai et al., 2007).
These results indicate the involvement of NMDA receptors in the
hippocampus in amphetamine place preference extinction learning.
However, when DCS was administered prior to amphetamine and
context re-exposure, the extinction of the conditioned place preference
was impeded, possibly due to enhancement of reconsolidationmemory
process (seebelow). Inanother study, administrationofDCS (30 mg/kg)
prior to extinction trials failed to enhance the rate of extinction of
ethanol conditioned place preference in mice (Groblewski et al., 2009).
The lack of effects during the extinction phase may be related to the
apparent strain-dependent cognitive-enhancing effects of DCS in
mice (Sunyer et al., 2008). Thus, the extinction-facilitating effects of
DCS may not be evident in the DBA/2 J strain used in this study in
comparison to the C57bl/c mice used in the cocaine conditioned
place preference study (Thanos et al., 2009). While repeated expo-
sure of DCS and extinction sessions (12 in total) failed to directly
enhance the extinction learning process itself, this dosing regimen
did however enhance the consolidation of extinction learning to
impair the subsequent reacquisition (i.e., when ethanol and the cues
were re-introduced) of the ethanol-associated contextual memory
(Groblewski et al., 2009). The finding that exposure tomultiple doses
of DCS before conditioning had no effect on the initial development
and learning that occurs during ethanol place preference condition-
ing supports this result.

The conditioned place aversion paradigm in which cues are paired
with drug abstinence can be used to study the withdrawal component
of the conditioned response in animals. In humans, drug-paired cues
elicit not only drug craving but also conditioned withdrawal, which
may trigger relapse (Robbins et al., 1997). An opiate receptor
antagonist such as naloxone is used to precipitate withdrawal in
opiate-dependent animals, thus establishing an aversion to the
withdrawal-paired compartment. Administration of DCS immediately
before extinction training dramatically increases the rate of extinction
of the naloxone-induced place aversion in morphine-dependent rats
suggesting that extinction of conditioned drug withdrawal involves
mechanisms similar to those involved in other types of drug-related
extinction learning (Myers and Carlezon, 2010a).

Using an animalmodel that explicitly extinguishes responses only in
the presence of discrete drug-paired cues and more closely approx-
imates exposure therapy in drug addicts, administration of DCS (30 mg/
kg) either before or immediately after a single extinction training
session of cocaine-associated cues resulted in facilitation of extinction
learning and subsequent delay in reacquisition of cocaine self-
administration in rats (Nic Dhonnchadha et al., 2010b). The effects of
DCS were dose-dependent, time-dependent and specific to its coupling
with explicit extinction training. Employing similar conditions, pre-
treatment with DCS (10 mg/kg) failed to alter cocaine cue extinction
learning inmonkeys; however, subsequent reacquisition of cocaine self-
administration was deterred. This effect of DCS was dose-dependent
and specific for reacquisition of cocaine self-administration following
extinction training as pretreatment with DCS prior to a self-adminis-
tration control session did not reduce cocaine self-administration
during the session or alter subsequent reacquisition. These results
suggest that DCS augmented consolidation of extinction learning
to deter reacquisition of cocaine self-administration in rats and
monkeys.

In the aforementioned studies, either conditioned place preference
procedure or self-administration experiments, all phases of the study
(conditioning, extinction and reinstatement or reacquisition) were
measured in the same context. A major drawback to exposure therapy
is the context specificity of the extinction therapy normally provided
in a location that is distinct from the location where drugs are typically
consumed (i.e., in a clinic or laboratory). This results in the restoration of
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cue reactivity in the natural environment (i.e., renewal effect, see
Section 4). To address this issue experimentally, Torregrossa et al.
(2010) extinguished lever responses in the cocaine self-administration
conditioning environment (context A) and exposed the rats to two
Pavlovian cue extinction sessions (60 non-contingent cue presentations
were presented in the absence of levers on two consecutive days) in
context B. This models the common forms of cue exposure therapy
conducted in humans that involves viewing cues without overt
instrumental actions. DCS (15 mg/kg) was administered on completion
of each of the Pavlovian cue extinction sessions. When rats were tested
in thedrug-taking context, DCS-treated rats demonstrated reduced cue-
reinstatement. This effect seems to be mediated by the NAc core, and
reinstatement is only reduced when DCS is given in conjunction with
explicit extinction learning. This study illustrates the ability of DCS to
enhance the context-independent consolidation of cocaine cue extinc-
tion learning and inhibit the renewal effect of re-exposure to cocaine-
associated cues.

Finally, low dose administration of DCS (5 mg/kg) prior to 2
extinction sessions in ethanol self-administration studies facilitated
extinction learning in rats (Vengeliene et al., 2008). Repeated
administration of DCS in combination with the extinction sessions
for a total of 12 sessions did not supplement the initial benefits of DCS
on extinction learning. This regimen did reduce alcohol-primed
reinstatement when tested on completion of the extinction regime.
Taken together, these studies in mice, rats and monkeys suggest that
DCS administration reduces the conditioned reinforcing properties of
drug-associated stimuli through facilitation of the consolidation of
extinction learning and deters relapse to drug-seeking behavior.

Based on this success, analogs of DCS or other systemically effective
glycine site modulators also are under investigation. D-serine, which is
an agonist at the glycine site has been found to rescue impaired long-
term potentiation and NMDA-mediated synaptic potentials in aged rats
ex vivo (Mothet et al., 2006) as well as attenuate memory deficits
induced by phencyclidine or by lesions of the perirhinal cortex in vivo
(Andersen et al., 2003; Andersen and Pouzet, 2004). D-serine has been
shown to facilitate response extinction learning at relatively low doses
(100 mg/kg) that subsequently reduced cocaine-primed reinstatement
of drug-seeking behavior in rats trained to self-administer cocaine
(Kelamangalath et al., 2009).However, inmanycases thedoses required
to improvememorydeficits in vivo are quitehigh (500–1000 mg/kg s.c.)
and are well within the range that induces nephrotoxicity in rats
(Maekawa et al., 2005). The nephrotoxic effects of D-serine were not
observed in mice, guinea pigs, rabbits, dogs, and gerbils (Kaltenbach
et al., 1979) and analysis of kidney function parameters did not reveal
any abnormalities in themajority of clinical trials (Tsai et al., 1998; Lane
et al., 2005; Heresco-Levy et al., 2005), although see Kantrowitz et al.
(2010). Administration of D-serine may be of therapeutic value as a
pharmacological adjunct to exposure therapy, however, in humans
large gram-level doses of ~2 g/day must be employed in order to
significantly elevate central nervous system levels and penetrate the
blood-brain-barrier (Javitt, 2008). Additionally, efficacy and side effect
profile of higher doses has not been systematically explored (Kantrowitz
et al., 2010), consequently agents targeting other means of selectively
modulating the NMDA receptor glycine site may be a more appropriate
route to follow.

3.2. Glycine-transporter inhibition

Another strategy is to increase glycine levels and hence NMDA
functioning via the use of a glycine transporter-1 (Gly-T1) inhibitor.
Gly-T1 is located on glial cells and its reuptake pump is themain route
of inactivation of synaptic glycine. Therefore, the inhibition of Gly-T1
reuptake can increase glycine levels in glutamatergic synapses and
consequently augment NMDA-receptor transmission (Stahl, 2007).
Rodent studies have shown amelioration of phencyclidine-induced
cognitive deficits after treatment with the Gly-T1 inhibitor NFPS
(Hashimoto et al., 2008), a synthetic derivative of sarcosine
(Nmethylglycine), the endogenous inhibitor of GlyT1 (Bergeron
et al., 1998; Herdon et al., 2001). Similarly, MK-801-induced impair-
ments in long term potentiation, reference memory (Manahan-
Vaughan et al., 2008) and novel object recognition (Karasawa et al.,
2008) is reversed by NFPS treatment. Moreover, Gly-T1 inhibitors
(ALX-5704 and Org 24598) ameliorate deficits in prepulse inhibition
of the acoustical startle response in mice and reverse phencyclidine
induced hypermotility, stereotypy and ataxia (Brown et al., 2001;
Kinney et al., 2003). In nonhuman primates, pretreatment with the
Gly-T1 inhibitor, PF-3463275 alleviated spatial working memory
deficits in an acute ketamine model of cognitive dysfunction (Roberts
et al., 2010). These findings indicate that targeting Gly-T1 may be
beneficial for improving the cognitive function in hypoglutamatergic
states, resulting from impaired NMDA receptor transmission.

To assess potential benefits of a Gly-T1 inhibitor for facilitating
exposure therapy targeting drug-related cues, it was shown that
administration of RO 4543338 (30 and 45 mg/kg) in combination
with 3 weekly 1 h extinction training sessions facilitated cocaine cue
extinction learning and deterred subsequent reacquisition of cocaine
self-administration in rats (Nic Dhonnchadha et al., 2010a). The
multiple doses of RO 4543338 were well tolerated and failed to
produce any non-specific behavioral deficits. In this experiment, RO
4543338 facilitated the rate of extinction, as reflected in rapid loss of
responding after a single extinction trial. The persistence of extinction
eliminated reacquisition of cocaine self-administration. The use of
multiple extinction sessions in conjunction with repeated dosing of
RO 4543338 may underlie the longer lasting attenuation of reacqui-
sition observed with the GlyT1 inhibitor relative to the effects
observed with DCS (Nic Dhonnchadha et al., 2010b). These studies
support the validity of the concept that enhancing NMDA receptor
activity by increasing synaptic glycine levels serves to enhance drug
cue extinction learning.

3.3. Cystine-glutamate exchanger activation

The cystine-glutamate exchanger is another target for potential
pharmacotherapy for enhancement of drug cue extinction learning.
The cystine-glutamate exchanger, which exchanges extracellular
cystine for intracellular glutamate, is downregulated after chronic
cocaine, resulting in reduced extracellular levels of glutamate (Baker
et al., 2003a; Madayag et al., 2007; Knackstedt et al., 2009). Acute
administration of the nutritional supplement N-acetylcysteine or NAC
(60 and 600 mg/kg, i.p.) restored the function of the cystine-
glutamate exchanger and increased the basal levels of extracellular
glutamate in the nucleus accumbens after withdrawal from cocaine
self-administration in rats (Baker et al., 2003b). Administration of
NAC has been shown to reverse memory impairment in rats exposed
to cadmium, as measured in the inhibitory avoidance task (Goncalves
et al., 2010) and improve cognitive functioning in dementia patients
(Adair et al., 2001).

In a study examining heroin self-administration (Zhou and Kalivas,
2008), daily NAC (100 mg/kg) facilitated extinction learning, an effect
most apparent during the first 5 days of response extinction training.
Fifteen days of NAC pretreatment in combination with daily response
extinction training reduced cue-and heroin-elicited reinstatement.
The reduction in cue-elicited reinstatement was long lasting, as a
reduction was still evident after 40 days of abstinence without further
NAC or extinction training. These effects may be due to the up-
regulation of the cysteine-glutamate exchanger and restoration of
glutamate transmission (Haugeto et al., 1996) to enhance, in this
instance, heroin cue extinction learning.

Thus, use of this compound as a potential for treatment in addicts
is supported by these preclinical studies in conjunction with a recent
pilot study examining cue-induced cocaine craving (LaRowe et al.,
2006; 2007). Following four doses of NAC (600 mg), administered at
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12-hour intervals, a reduction in the subjective reports of the desire to
use and interest in cocaine was reported without effecting cocaine
craving, following exposure to cocaine-related cues. While this study
did not specifically use the strategy of NAC in combination with
exposure therapy, these results are promising and support further
investigation of the effects of NAC in combination with extinction
training in the clinical population.

3.4. Metabotropic glutamate receptor activation

Other strategies aimed at pharmacologically enhancing NMDA
receptor function involve targeting the metabotropic glutamate
(mGlu) receptors. mGlu receptors are structurally and biochemically
coupled to NMDA receptors to influence NMDA receptor function and
NMDA-dependent synaptic plasticity and learning and memory pro-
cesses (Anwyl, 2009; Niswender and Conn, 2010; Rosenbrock et al.,
2010). Of particular interest have been drugs which act on the mGlu5
receptors, which are highly expressed in the mescorticolimbic regions
of the brain (Abe et al., 1992; Bell et al., 2002). These compounds do not
activate the mGlu5 receptor directly, but act at an allosteric site to
potentiate activation by glutamate (Conn et al., 2009). Systemic
administration of the mGlu5 receptor positive allosteric modulators
3-cyano-N-(1,3-diphenyl-1 H-pyrazol-5-yl)benzamide (CDPPB) and
ADX47273 improved performance in a model of hippocampus-
dependent spatial learning (Ayala et al., 2009). CDPPB has been
shown to reverse MK-801-induced impairments in performance in
behavioralflexibility tasks (Darrah et al., 2008), and improve cognition
as measured by novel object recognition (Uslaner et al., 2009).

Systemic administration of CDPPB (3 and 30 mg/kg) dose-
dependently facilitated extinction of cocaine-conditioned place
preference (Gass and Olive, 2009). The effect was most pronounced
with the highest dose of CDPPB (30 mg/kg) and was blocked by co-
administration of the mGlu5 receptor antagonist MTEP or the NMDA
receptor antagonist MK-801, highlighting the functional interactions
between mGlu5 receptors and NMDA receptors in extinction-related
learning. In a study involving cocaine self-administration (Olive,
2010), CDPPB (30 mg/kg) was administered prior to 3 daily
consecutive extinction sessions, whereby cocaine was no longer
available but lever pressing resulted in presentation of the cocaine-
paired CS. CDBBP facilitated cocaine cue extinction learning on days 1
and 2 of extinction training. In a preliminary study from our
laboratory that was designed to mimic the weekly exposure therapy
sessions typically used in people, a facilitation of cocaine cue
extinction learning was observed in rats trained to self-administer
cocaine when CDPPB (10 mg/kg) was administered in conjunction
with 3 weekly 1 h extinction training sessions (Fig. 2, panel a).
Additionally, a reduction in responding during the first cocaine
reacquisition session was observed (Fig. 2, panel c), with responses
returning to baseline levels over the next four reacquisition sessions.
This effect was observed only when CDBBB was administered in
combination with explicit cue extinction training, as CDPPB did not
alter responding when administered prior to cocaine self-adminis-
tration sessions (Fig. 2, panel b) and did not alter subsequent
reacquisition of cocaine self-administration under these control test
conditions (Fig. 2, panel d). Testing with a higher dose of CDPPB
(30 mg/kg) may producemore robust effects on facilitating extinction
and deterring reacquisition (Gass and Olive, 2009; Olive, 2010). These
studies suggest that positive allosteric modulation of the mGlu5
receptor may be a novel avenue to facilitate extinction of drug-
associated memories.

4. Translational issues – lessons learned from animal studies

Animal research using combined treatment with a cognitive-
enhancer and extinction training to reduce relapse to drug-seeking
behavior is highly encouraging, particularly in light of the fact that the
beneficial effects observed in rodents extend to non-human primates.
A next step is to translate these preclinical findings to the treatment of
substance use disorders. However, there are several challenges we
face due to a multitude of issues that are necessary to consider for this
approach to be successful (for discussion of additional translational
issues, see Kantak and Nic Dhonnchadha, 2011).

4.1. Beware of memory reactivation and reconsolidation

The timing of treatment with a cognitive enhancer and length of
the exposure therapy sessions need to be considered carefully in
clinical studies. Investigators agree that the general mechanism by
which DCS in combination with extinction training reduces drug
relapse is through enhanced consolidation of the newly formed
extinction memory that competes with retrieval of the previously
established drug memory. The theoretical time window for NMDA-
dependent memory consolidation is up to 4 h post-training (Dash
et al., 2004). Thus, if DCS is administered more than 4 h after
extinction training, drug-seeking behavior is not attenuated (Nic
Dhonnchadha et al., 2010b). A more critical concern is if the length of
the extinction training session is too short. Early in extinction training,
a memory reconsolidation process is initiated, which serves to
restabilize and strengthen old memories following their reactivation
through cue exposure (Nader, 2003). It has been demonstrated that
when DCS is administered prior to a single 30 min session of non-
contingent drug cue exposure in rats trained to self-administer
cocaine, lever responses are elevated during a subsequent test for
drug-seeking behavior (Lee et al., 2009). These findings indicate that
the previously established drug memory can be enhanced if DCS is
administered in combination with too brief a period of cue exposure
in rats. The formation of extinction memory and its facilitation by DCS
or other cognitive-enhancer may require a longer period of non-
reinforced cue exposure (Pedreira andMaldonado, 2003). Preliminary
findings from our laboratory suggest that greater than 60 min of non-
reinforced drug cue exposure is necessary to stabilize cocaine cue
extinction responses to saline-like levels in rats (Fig. 3).

In studies in which an augmentation of exposure therapy was
reported for anxiety disorders (Ressler et al., 2004; Hofmann et al.,
2006; Guastella et al., 2008; Kushner et al., 2007;Wilhelm et al., 2008;
Otto et al., 2010), the length of exposure therapy sessions varied from
35 to 90 min. Is 35 to 90 min of drug cue exposure in addicts sufficient
to avoid enhancing reconsolidation of drug memory after treatment
with a cognitive-enhancing drug? It is important to note that in
animal studies with DCS, the length of extinction training sessions is
shorter for extinguishing fear-conditioned responses (15 to 24 min)
than drug-conditioned responses (60 min or more). Unclear is the
time course of the transition from memory reconsolidation to
extinction consolidation upon cue exposure in people, especially
thosewho are addicted to drugs and are drug cue reactive.We suggest
that human laboratory studies are needed that manipulate length of
the exposure sessions to ascertain optimal therapeutic conditions for
enhancing consolidation of drug cue extinction and avoiding
reconsolidation of drug memory after treatment with a cognitive
enhancer. An additional strategy that has been proposed is to use a
combined approach whereby a cognitive enhancer is used to facilitate
consolidation of drug cue extinction and an amnesic agent is used to
interfere with reconsolidation of drug memory during cue exposure
(Taylor et al., 2009). While this concept is very appealing, navigating
the temporal complexities inherent in this approach requires careful
consideration and systematic evaluation.

4.2. Navigating spontaneous recovery, renewal, reinstatement and
incubation of craving

Extinction is not unlearning, but is a form of new learning that
competes with the original memory for retrieval. Consequently, after
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Fig. 2. Cocaine cue extinction and reacquisition of cocaine self-administration after treatment with CDPPB. Rats were trained to self-administer 0.3 mg/kg cocaine under an FI 5 min
(FR5:S) second-order schedule paired with a 2-s light cue before undergoing three 1 h weekly extinction training sessions. Lever responses were extinguished by substituting saline
for cocaine delivery while maintaining response contingent presentation of the cocaine-paired discrete light cue upon completion of each FR5. Rats received i.p. injections of either
0 mg/kg (n=6) or 10 mg/kg CDPPB (n=6) 15 min prior to the weekly extinction (a) or self-administration sessions (b). Reacquisition of cocaine self-administration began 7 days
after the last extinction or self-administration session (c and d, respectively) under conditions identical to self-administration training. Values are the mean±SEM percent of
baseline lever responses (last five cocaine self-administration sessions). * pb0.03 compared to the vehicle control.
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extinction training the original memory can spontaneously recover or
can be renewed or reinstated. Another point to consider is incubation
of craving, which may influence the long-term efficacy of exposure
therapy.
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Fig. 3. Time course of drug cue extinction. Ratswere trained to self-administer 0.3 mg/kg
cocaine (n=8) or passively receive yoked saline (n=4) under an FR5 schedule before
undergoing a single 2 h extinction training session for which cocaine delivery was
suspended, but the cocaine-paired discrete light cue was presented upon completion of
each FR5. The number of active lever responses during the extinction session was
divided into 30 min bins. * pb0.05 compared to the corresponding saline control.
Spontaneous recovery of the extinguished response occurs with
the passage of time, and can be viewed as a renewal effect that occurs
when the CS is tested outside its temporal context (Bouton, 2004).
This situation results in a failure to retrieve an extinction memory,
which would be detrimental to a drug addict who has completed
exposure therapy sessions and is later confronted with stimuli that
can trigger a drug memory and cause relapse. Research in rats has
shown, though, that when a cue is presented intermittently during
extinction training, spontaneous recovery is attenuated (Brooks,
2000). Thus, just as too short a length of cue exposure during
extinction training is counterproductive (leading to memory recon-
solidation); too frequent the rate of cue exposure during extinction
training may be equally counterproductive (leading to spontaneous
recovery at later time points). It has been shown that in rats trained to
self-administer cocaine under a second-order schedule before
undergoing drug cue extinction, spontaneous recovery of cocaine-
seeking behavior was significantly greater after 21 days than 1 day of
cocaine and cocaine cue abstinence (Di Ciano and Everitt, 2002). It is
important to note that the schedule of contingent cue presentation
during extinction training in this studywas quite frequent, whichmay
have undermined retrieval of the extinction memory at a later time
point. If exposure therapy targeting drug-related cues is to be suc-
cessful, attention to the frequency of cue presentation may be an
important factor for reducing spontaneous recovery. Of great interest
is the fact that when DCS is combined with fear extinction training in
rats, spontaneous recovery is reduced (Vervliet, 2008).

Renewal refers to the robust return of conditioned responding
when there is a change of context after extinction (Bouton, 2004). The
renewal effect is observed, for example, when conditioning takes
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place in one context (context A) and extinction training in a second
context (context B) prior to testing taking place in the original
conditioning context (context A). In other words, renewal is context-
specific. This situation is similar to what may be faced by individuals
who become addicted to drugs in one environment, undergo exposure
therapy in a therapeutic setting, and then return to their original
environment. Renewal may be an obstacle to successful treatment,
even if exposure therapy is combined with a cognitive enhancer. For
example, DCS administration during extinction training in rats did not
prevent a renewal effect from occurring when the fear-associated CS
was tested in the original conditioning context (Woods and Bouton,
2006). However, in the first test for context-specificity of drug cue
extinction in rats trained to self-administer cocaine (Torregrossa et al.,
2010), the renewal effect was not observed in DCS-treated rats. These
findings demonstrate that although DCS does not reduce context-
specificity of fear extinction, it can prevent context-specificity of drug
cue extinction. Further research examining the degree to which DCS
and other cognitive-enhancing drugs may prevent the renewal effect
for extinguished drug cues may assist in determining medication
choices in individuals addicted to drugs and undergoing exposure
therapy.

Reinstatement refers to the return of an extinguished response
after re-exposure to the US or the CS–US complex (Bouton, 2004). In
many studies of fear extinction, animals are tested for reinstatement
24 h after footshock re-exposure. For drugs of abuse, animals are
tested for reinstatement immediately after drug or drug+cue re-
exposure. Drug prime-induced reinstatement is thought to model
relapse in abstinent addicts following drug re-exposure (de Wit and
Stewart, 1981; Jaffe et al., 1989). It is of interest that reinstatement of
fear following footshock re-exposure is not evident in rats that
received DCS during fear extinction training (Ledgerwood et al.,
2004). A lessening of the impact of reinstating stimuli by treatment
with DCS and other cognitive enhancers during extinction training
also has been demonstrated in cocaine-trained rats and monkeys
(Kelamangalath et al., 2009; Paolone et al., 2009; Nic Dhonnchadha
et al., 2010b). Collectively, these findings suggest that when exposure
therapy targeting drug-related cues is provided as a stand alone
treatment, addicts would remain vulnerable to relapse via spontane-
ous recovery, renewal and reinstatement processes. If a cognitive
enhancer is combined with exposure therapy, concern for spontane-
ous recovery, renewal and reinstatement may be mitigated. As DCS
and other cognitive enhancers also facilitate neuroplasticity in
memory systems required for effective extinction learning (Rouaud
and Billard, 2003; Richter-Levin and Maroun, 2010), neurocognitive
impairments that may undermine exposure therapy in drug addicts
may be mitigated as well.

A key factor in determining the efficacy of cue exposure therapy in
combination with a cognitive enhancer may be the duration period of
withdrawal or abstinence the addict has undergone prior to treat-
ment. Numerous studies in rats, non-human primates and humans
indicate that the salience of drug-related cues and hence their ability
to induce drug-seeking behavior, increases in a time-dependent
manner (Grimm et al., 2001; Weerts et al., 2006; Kerstetter et al.,
2008; Bedi et al., 2010). This phenomenon, termed “incubation of
craving” is believed to occur when most of the neuroadaptations that
accompany withdrawal from chronic drug use are in progressive
decline (Lu et al., 2004b). Re-exposure to drug-related cues during
abstinence induces exaggerated cue reactivity, as evidenced by with
an increase in extinction responding in the rat. Incubation of craving
has been demonstrated to follow an inverted U-shaped curve in rats
trained to self-administer cocaine, heroin, nicotine and methamphet-
amine (Grimm et al., 2001; Shalev et al., 2001; Lu et al., 2004a;
Abdolahi et al., 2010; Shepard et al., 2004) with levels of extinction
responding remaining elevated over the course of the first 3 months
of withdrawal. In cigarette smokers, cue-induced craving in response
to smoking cues was greater in subjects abstinent for 35 days in
comparison to those that underwent 1 or 14 days or abstinence (Bedi
et al., 2010). These studies indicate that the risk of relapse may persist
or increase with abstinence and that the timing of extinction therapy
will be an important consideration to its efficacy.

4.3. Generalizing from cocaine treatment to other drugs of abuse

As reviewed in Section 3, the majority of preclinical studies
investigating the effects of cognitive enhancers on drug cue extinction
have focused on cocaine as the drug of abuse. These studies have
shown positive effects in that cognitive enhancers facilitated consol-
idation of cocaine cue extinction and attenuated relapse to cocaine-
seeking and cocaine-taking behavior. Use of this strategy as a
potential treatment in individuals addicted to cocaine is clearly
warranted, and one group of investigators has begun to explore the
effect of DCS on exposure therapy targeting cocaine-related cues in a
preliminary fashion (Price et al., 2009). As these studies progress, an
important point to consider is whether or not the benefits observed
for DCS and other cognitive enhancers on cocaine cue extinction in
preclinical studies will extend to other drugs of abuse, and in the
process, provide a framework for drug abuse treatment in general.

One argument suggests this may be so, insofar as a broad spectrum
of drugs of abuse (serving as USs) produces a strong associative link
with discrete and contextual cues (serving as CSs) that are present in
the environment at the time of drug-taking (Everitt et al., 2001).
Through repeated CS–US pairings, the CS is conditioned to predict the
availability the US, and forms the basis for drug memory and drug-
seeking behavior. During extinction training, an organism learns that
a CS no longer predicts the US, which forms the basis for extinction
memory (Bouton et al., 2006). Thus, if the purpose of treatment with a
cognitive enhancer is to facilitate the process by which a CS no longer
predicts the US, then whichever drug of abuse is represented by the
US is irrelevant. The few preclinical studies that have examined drug
cue extinction and its facilitation by a cognitive enhancer support this
view for drugs of abuse other than cocaine (e.g., amphetamine, heroin,
nicotine and ethanol).

4.4. From anxiety to addiction and back: a translational pathway for
identifying new treatments

The idea that DCS might augment drug cue extinction originated
from reports showing a facilitation of fear extinction after treatment
with DCS in rats (Walker et al., 2002; Ledgerwood et al., 2003). These
findings led to the first studies evaluating the effects of DCS combined
with exposure therapy for the treatment of anxiety disorders (Ressler
et al., 2004; Hofmann et al., 2006). A dual translational approach may
serve as a pathway for identifying new cognitive-enhancing drugs to
use in combination with exposure therapy for individuals with
substance use disorders. Treatments appropriate for enhancing
extinction of fear and anxiety also may be appropriate for enhancing
drug cue extinction. The emergence of GlyT-1 inhibitors as treatments
to enhance drug cue extinction follows this translational pathway.

One possible new treatment lead suggested by fear conditioning
studies is 4-[2-(phenyl-sulfonylamino)ethylthio]-2,6-difluorophe-
noxyacetamide (PEPA), which is an allosteric potentiator of α-amino-
3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors via an
enhanced expression of GluR3/4 subunits preferentially in mPFC vs.
amygdala or hippocampus (Zushida et al., 2007). Past work has
demonstrated that chronic administration of PEPA improves Morris
water maze test performance in rats made ischemic by occlusion of
the middle cerebral artery (Sekiguchi et al., 2001), suggesting action as
a cognitive enhancer. In fear conditioning studies in mice, PEPA
administered prior to extinction training has been shown to facilitate
fear extinction by reducing the duration of the freezing response
during the post-extinction retrieval test (Zushida et al., 2007). These
investigators additionally demonstrated that, unlike DCS, PEPA does not



Table 1
Consequences of the effects of DCS combined with drug cue extinction training in
animals.

Measure Drug Effect Reference

Extinction consolidation Alcohol ↑ Groblewski et al., 2009;
Vengeliene et al., 2008

Amphetamine ↑ Sakurai et al., 2007
Cocaine ↑ Botreau et al., 2006

Kelley et al., 2007
Paolone et al., 2009
Nic Dhonnchadha et al., 2010b
Thanos et al., 2009
Torregrossa et al., 2010

Morphine WD ↑ Myers a Carlezon, 2010a
Reconsolidation Amphetamine ↑ Sakurai et al., 2007

Cocaine ↑ Lee et al., 2009
Reacquisition Alcohol ↓ Groblewski et al., 2009

Cocaine ↓ Nic Dhonnchadha et al., 2010b
Spontaneous recovery ND
Renewal Cocaine ↑ Thanos et al., 2009

↓ Botreau et al., 2006
Thanos et al., 2009
Torregrossa et al., 2010

Reinstatement Alcohol ↓ Vengeliene et al., 2008
Cocaine ↓ Paolone et al., 2009

↑ Kelley et al., 2007

↑: Facilitation; ↓: Blockade; ND: Not determined; WD: Withdrawal.
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facilitate reconsolidation of fear memory following brief (3 min)
exposure to the fear-inducing context (Yamada et al., 2009). Recently,
infusion of PEPA into the infralimbic cortex following brief (15 or
30 min) exposure to a cocaine self-administration environment was
shown to enhance extinction retention (LaLumiere et al., 2010). These
findings support the idea that PEPAdoes not facilitate reconsolidation of
the drugmemory evenwhen context exposure is relatively brief during
response extinction training sessions. How PEPA influences drug cue
extinction learning in an animal model that more closely approximates
cue exposure therapy in drug addicts remains unexplored.

A second new treatment lead concerns activation of the cannabi-
noid CB1 receptor. While synthetic and endogenous cannabinoids
impair performance on standard tests for memory in animals
(Lichtman et al., 1995; Riedel and Davies, 2005), research has
shown that CB1 receptor agonists facilitate rather than impair
extinction learning. Pioneering work by Marsicano et al. (2002)
illustrated the importance of the CB1 receptor for extinction learning
by showing impaired fear extinction in mutant mice lacking CB1
receptors. Subsequent studies in rats demonstrated that systemic
administration of AM404 (an inhibitor of cannabinoid breakdown and
reuptake) and WIN55212-2 (a CB1 receptor agonist) enhanced fear
extinction (Chhatwal et al., 2005; Pamplona et al., 2006). Recently,
both compounds were shown to not only facilitate within-session
extinction of fear, but also produce long-term retention of fear
extinction (Pamplona et al., 2008). Findings also support the use of
CB1 receptor agonists to facilitate drug cue extinction learning. Using
the conditioned place preference model in rats, administration of low
doses of Δ9-THC was shown to facilitate extinction of environmental
cues associated with cocaine or amphetamine exposure (Parker et al.,
2004). The use of this class of compounds with exposure therapy is
made even more intriguing by findings in rats showing that intra-
amygdala infusion of CB1 receptor agonists after a memory reactiva-
tion session actually blocks reconsolidation of fear memory, as well as
reinstatement and spontaneous recovery of fear (Lin et al., 2006).

Another agent that has been tested in studies of fear and anxiety is
the α-2 adrenergic autoreceptor antagonist yohimbine. Systemic
administration of yohimbine has been shown to facilitate fear
extinction in rats and mice (Cain et al., 2004; Morris and Bouton,
2007; Mueller et al., 2009) and to augment exposure therapy in
individuals with claustrophobia (Powers et al., 2009). The mechanism
by which yohimbine is thought to produce these effects is via
noradrenergic stimulation of the mPFC. Yohimbine, though, was not
able to prevent the renewal of fear when rats were tested outside the
extinction context and was not able to strengthen retention of fear
extinction. Preliminary evidence in rats and mice suggests that
yohimbine may actually impair extinction of responses maintained
by environmental cues associated with cocaine (Davis et al., 2008;
Kupferschmidt et al., 2009). These findings suggest that yohimbine
may not be a promising lead for augmenting drug cue extinction.
Thus, treatments appropriate for enhancing extinction of fear and
anxiety may not always translate into treatments appropriate for
enhancing drug cue extinction.

5. Conclusions

The trajectory from drug use to addiction progresses as neural
plasticity in key brain circuits plays upon the added pharmacological
impact of the abused substance. The means to reverse drug-induced
neural plasticity and therapeutically improve cognitive function in the
addicted brain is an important quest. Preclinical studies showing the
strengthening of drug cue extinction memory with DCS (summarized
in Table 1) provide translational support for evaluating adjunct DCS
treatment with exposure therapy in individuals addicted to drugs.

Further exploration of neurobehavioral mechanisms by which
cognitive enhancers facilitate drug cue extinction is warranted.
Important aspects of drug action to delineate include identifying
target effector substrates, specifying anatomical localization, and
revealing interactions with other neural systems. Such studies can
help improve the understanding of the neurobiology of drug cue-
related extinction memory and aid in the development of therapeutic
agents geared to ultimately cure addiction or vastly improve the
chances for recovery.
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